Выбор редакции:

Реклама

Главная - Рождаемость
Реферат: Геоинформационные системы электронная картография. Электронная картографическая навигационная информационная система, – экнис Электронная картография

В основу использования электронных карт в судовождении положены следующие основные принципы:

Точность и полнота электронных навигационных карт (ЭНК) должна быть не ниже бумажных навигационных;

Картографическая база данных (КБД) и корректуры к ней должны быть выполнены в официально принятых МГО стандартных форматах;

КБД и ЭНК приобретают юридическую силу только после их утверждении национальными гидрографическими службами;

Исходная КБД в судовых системах автоматизации хранится в неизменяемом виде;

КБД и система ее управления являются программными продуктами, поэтому размножение, регистрация и их распространение должны соответствовать правилам.

В ЭКНИС могут использоваться три вида электронных карт:

Векторные карты, выпущенные национальными гидрографическими службами в соответствии с международным стандартом.

Растровые навигационные карты, выпускаемые официальными уполномоченными организациями.

Неофициальные электронные карты (упрощенные) частично не соответствующие стандарту.

Технология изготовления векторных карт представляет процесс, включающий автоматизированную обработку информации и одновременный контроль ее профессиональными инженерами-гидрографами для предоставления конечного продукта пользователю. Электронная карта может быть получена на основе ис­пользования информации бумажной карты или электронной базы данных, находящейся в архиве. Современная технология позволяет получить электронную карту одновременно с ведением промерных работ на судне.

В настоящее время активно используется технология изготовления электронных карт по информации имеющихся бумажных. Первичный этап включает сканирование бумажной карты и получение растрового образа, т.е. файла рисунка этой карты. Последующая обработка предполагает векторизацию оператором полученной растровой карты с помощью специальной программы.

Первоначально создается файл пустой электронной карты с параметрами координат углов, соответствующими углам растровой карты, указываются система координат (эллипсоид) и проекция бумажной (растровой) карты.

После привязки углов растровой карты в координаты образовавшейся пустой электронной карты оператор в рекомендованной последовательности выбирает объекты цифрования, которым будет присваиваться определенный код. Все объекты карты можно разделить на площадные, линейные, точечные и справочную информацию.

При фиксировании точечных объектов происходит запоминание координат этой точки и кода, по которому он будет распознаваться картографической системой впоследствии.

Линейные объекты векторизуются программой, позволяющей распознавать точки растровой карты. Так, программным способом образуется линия с точками, закодированными определенным образом. Площадные объекты представляются в виде замкнутого контура с автоматическим кодированием всех точек внутри него.

Справочная информация может относиться ко всей карте (проекция и система координат), группе объектов (условия движения судов внутри портовых вод) или иметь пояснительный характер описания отдельных точек, отражаемых на карте (места якорных стоянок).

Кодированные таким образом объекты бумажной карты представляют векторизованную базу данных, которая может обрабатываться, распознаваться и отображаться в картографической системе. При использовании электронной базы данных, хранящейся в архиве процесс векторизации аналогичен.

В настоящее время нет полной коллекции векторных карт на весь Мировой океан.

Как уже отмечалось, неофициальные электронные карты частично не соответствуют стандарту. Векторные электронные карты, изготовленные коммерческими компаниями, являются только информационными и не могут заменять бумажные карты. Изготавливая неофициальные карты во внутреннем формате, при­сущем только конкретной фирме, производители сами принимают решение о виде их представления на экране, использовании цветовой гаммы, библиотеке отображаемых символов, последовательности и уровне насыщенности информацией объектов карты. Обычно уровень качества этой работы, контролируемой профессиональными гидрогра­фами, является высоким.

Создание растровых навигационных карт производится путем сканирования обычных бумажных карт. Растровые карты в RCDS представляют графическую копию бумажных карт, отображаемую на экране монитора. Она удобна в восприятии, т.к. полностью соответствует бумажной, но менее информативна и не позволяет решать многие навигационные задачи, связанные с безопасностью судовождения.

Как отмечалось, векторные карты более информативны по сравнению с растровыми и могут наиболее активно использоваться в картографических системах, так как каждая точка имеет определенный код, который идентифицируется и распознается картографической системой. Таким образом, векторная карта позволяет производить опознавание любых объектов и своевременно реагировать на них, предупреждая судоводителя о приближении к подобным объектам. Это не относится к растровой карте, т.к. она является растровым образом бумажной карты - ее фотографией, представляющей цветовую гамму, которая не может быть использована в системе своевременных предупреждений о приближении к опасности. Система распознает различные цвета, однако не может их идентифицировать по какому либо признаку, В связи с этим растровые карты не могут использоваться в системе сигнализации.

Другим недостатком растровых карт является то, что невозможно одновременно наблюдать на экране монитора карты, выполненные в разных проекциях.

Поскольку изменение масштаба растровой карты на экране монитора представляет собой «растягивание» или «сжатие» изображения, то возникают трудности в состыковке двух смежных растровых карт, выполненных на основе бумажных карт разного масштаба, при этом может происходить потеря информации.

Основной единицей распространения ЭНК является ячейка, представляющая навигационно-гидрографическую информацию определенного географического района. Объем информации файла ячейки не должен превышать значения 5 мегабайт. В ячейке содержится часть базы данных навигационно-гидрографической обстановки определенного географического района. Имя ячейки состоит из восьми символов.

Нумерация ячеек происходит следующим образом: например GB400001

GB 4 00001

Код тип номер

Страны карты карты (ячейки)

-Первые два символа указывают код страны-производителя ЭНК,

-Третий символ обозначает код масштабного ряда от 1 до 6 для масштабов от 1:2250000 и мельче до 1:2500.

Остальные пять символов ССССС имени ячейки должны определять уникальный идентификатор ячейки данного масштабного диапазона.

Основным источником при производстве ЭНК в настоящее время являются их бумажные аналоги, т.к. многие производители электронной картографической продукции не занимаются сами гидрографическими исследованиями.

Бумажная карта, с которой при этом копируется информация, может иметь отличие от цифрового аналога ЭНК в следующем:

1) нарезка рамок (нет необходимости делать площадное перекрытие карт).

Большинство ЭНК производится без изменения нарезки рамок бумажных карт. Это позволяет не выпускать новые каталоги. Однако для работы с ЭНК отпадает необходимость перекрытия карт, т.к. происходит автоматическая загрузка новой карты при приближении судна к ее границе. В связи с этим нарезка может представлять стыкующиеся квадраты - ячейки. В основе нарезки ячеек лежит требование по их информативности - объем информации ячейки не должен превышать 5 мегабайт.

2) не соответствие проекции.

Основными проекциями морских навигационных карт являются 6 проекций:

Нормальная равноугольная цилиндрическая проекция Меркатора.

Поперечная равноугольная цилиндрическая проекция Меркатора.

Поперечная равноугольная цилиндрическая проекция Гаусса.

Нормальная равноугольная поликоническая проекция (на картах USA).

Нормальная (полярная) равновеликая азимутальная проекция.

Universal Transversal Mercator"s Projection (UTM). Это аналогия проекции Гаусса.

При издании ЭНК обязательно учитываются особенности проекций бумажных карт и, как правило, производится пересчет в Projection Mercator (нормальная равноугольная цилиндрическая проекция Меркатора). В этой проекции представлено большинство бумажных навигационных карт, она наиболее удобна при прокладке курсов и чаще использует­ся в судовождении.

3) не соответствие системы координат.

Работа системы ECS ориентирована на координирование по спутниковой системе. ПИ современных систем выдают координаты местоположения судна в геодезической системе WGS-84.

Бумажные карты, в действительности, изготавливаются в различных системах координат, которые обязательно указываются в легенде карты. Наиболее часто встречающимися системами координат являются:

1) WGS - 84 (эллипсоид с тем же именем).

2) WGS - 72 (эллипсоид с тем же именем).

3) ED-50 (Europien Datum) (эллипсоид International).

4) Pulkovo 1942 (референц эллипсоид Красовского).

Исходя из этого, координаты объектов на бумажной и ЭНК могут не совпадать. Это произойдет если система координат бумажной карты отличается от WGS - 84. На бумажной карте и на ЭНК указываются поправки для перехода из системы WGS - 84 к системе координат бумажной карты.

4) не соответствие координат объектов в результате ошибок при цифровании.

Ошибки, возникающие при цифровании карт, не должны превышать требований предъявляемых в ТЭТ к ECS.

Линейные погрешности, вводимые судоводителем для выработки ECS сигналов при отклонении судна от заданного пути, приближении к опасности, приближении к точке поворота, не должны превышать 1 мм в масштабе экрана дисплея.

Одним из основных критериев качества продукции считается возможность использования карт различных ведущих фирм в своей бортовой системе. Желательно при этом "читать" не только векторные, но и растровые карты. Основная проблема возникает в том, что практически все фирмы изготавливают карты (кодируют) в своем формате. Формат - это спецификация последовательности и видов представления элементов информации (чисел, текста) на носителе.

Если формат совершенен и отвечает всем требованиям для ECDIS, то его не очень трудно перевести в международный формат, в котором оговорены все особенности и последовательность изложения информации об объектах. Процедура перевода одного формата в другой называется конвертированием.

Однако, многие фирмы имеют достаточную коллекцию, но не выдерживают требований МГО, т.е. не могут или не хотят представлять свои карты по установленному стандарту. Для того чтобы прочитать ЭНК в своей бортовой системе необходимо знать их формат и структуру, т.е. иметь программу для преобразования данных, иными словами иметь конвертор. Подобными конверторами фирмы обмениваются по взаимной договоренности в целях дополнения своих коллекций, выражаясь профессионально "открывают свой формат".

Исходя из того, что векторные карты имеют значительное преимущество перед растровыми и системы ECS настроены на загрузку векторных карт, у судоводителя возникают определенные трудности при переходе с векторной карты на растровую. Это проявляется при изменении масштаба (появляется сильное нагромождение или разряжение информации), перестает срабатывать настроенная система сигнализации, меняется время загрузки при переходе с одной растровой карты на другую и т.д.

Корректура электронных карт

Для поддержания ЭНК на уровне современности в соответствии с требованиями Конвенции SOLAS-74/95 предусмотрены операции по их корректуре.

Различают корректуры:

Официальные, источником которых являются гидрографические службы;

Местные, поступающие от региональных уполномоченных служб(береговой охраны, лоцманской службы и т.д.);

Официальные корректуры могут быть следующими:

Локальные постоянные или временные (с указанием срока действия);

Корректуры для изменения картографической нагрузки;

Для добавления, удаления и замены картографических объектов или их атрибутов;

Пространственные корректуры для полной замены одной или нескольких карт.

Система корректуры ЭНК в ЭКНИС соответствует следующим основным принципам:

· корректуры стандартизованы по структуре, системе классификации и кодирования, а формат передачи данных корректуры соответствует международному формату DX90;

· обновление ЭНК включает использование не только постоянных, временных и предварительных Извещений мореплавателям (ИМ), но относящихся к этой карте навигационных предупреждений NAVARЕA и NAVTЕX;

· обновлению подвергается системная ЭНК, исходная КБД сохраняется в неизменном виде;

· вносимая корректура не должна ухудшать отображаемую на экране ЭНК, сведения о внесенной корректуре хранятся в памяти системы и отображаются по запросу судоводителя-оператора;

· ответственность национальных гидрографических организаций за корректуры ЭНК эквивалентна ответственности, которую они несут по корректуре бумажных навигационных карт.

Основные требования к корректуре и сервису распространения корректурной информации изложены в «Руководстве по корректуре ENC». Официальная корректура IHO должна отличаться от местной, выпущенной портовыми властями, a ECDIS минимальной способности должна отражать различные методы корректуры.

Руководство определяет следующие категории сервиса:

Сервис по расписанию - сервис корректуры в определенные интервалы времени, заранее известные отправителю и получателю.

Сервис по требованию - любой сервис корректуры, выраженный требованием индивидуального пользователя, т.е. передача корректуры по запросу пользователя.

Чрезвычайный сервис - любая передача корректуры, не использующая регулярное расписание и содержащая срочную информацию касающуюся ENC.

Методы корректуры подразделяются на различные категории.

- Ручная корректура - основана на неформатированной информации корректуры (ИМ, передача голосом по радио и т.д.). Корректурная информация должна вводиться в структурированной форме, соответствующей стандарту ECDIS.

Производство ручной корректуры осуществляется с помощью графического редактора, имеющегося в электронной картографической системе. Создаваемые судоводителем корректурные файлы нумеруются и хранятся в определенной последовательности. Обычно информация последующих файлов включает информацию предыдущих. Это позволяет периодически уничтожать предыдущие файлы. При наложении информации корректурного файла на основную карту можно на экране монитора наблюдать откорректированную карту. Основной особенностью является то, что отображение основной карты будет отличаться от отображения внесенной корректурной информации.

- Автоматическая корректура - процесс корректуры, при котором информация корректуры воспринимается в SENC без вмешательства оператора.

Автоматическая корректура может быть разбита на два подкласса.

Полная автоматическая корректура - метод корректуры, при котором данные корректуры достигают ECDIS напрямую от дистрибьютора, без какого-либо вмешательства человека. Это может быть достигнуто через передачу по радио в автоматическом режиме. Следуя процедурам подтверждения или приема, ECDIS автоматически производит корректуру SENC. Судоводитель при этом не предпринимает никаких действий, а только отслеживает дату последней корректуры карт судовой коллекции, убеждаясь в том, что корректура прошла и карты откорректированы.

Полуавтоматическая корректура - метод корректуры, требующий вмешательства человека для установления связи между техническими средствами, используемыми для передачи информации по корректуре, и ECDIS. В таких случаях судоводитель вынужден предпринимать определенные действия для корректуры судовой коллекции карт.

Информацию о корректуре можно получить, используя сеть Интернет и имея доступ к корректурным файлам карт судовой коллекции на сайте официального дистрибьютора корректуры.

Откорректировать карты можно также, заказав через агента или представителя компании в порту диск CD с обновленной коллекцией карт или дискету с набором корректурных файлов судовой коллекции электронных карт. Информация с дискеты позволяет изменять состояние ENC. Карты с диска CD полностью заменяют коллекцию карт на откорректированную. Периодичность издания новых дисков CD обычно составляет 3 месяца.

Некоторые фирмы предлагают сервис корректуры используя каналы телефонной связи. Для этого судоводитель в порту должен дозвониться до фирмы-производителя корректуры и получить по каналу телефонной связи кодированную информацию по корректуре дня своей судовой коллекции.

Сервисные возможности различных электронных картографических систем могут быть различны.

Присоединяемая корректура (автоматическая) - изменяет информацию, содержащуюся в предшествующей SENC;

Не присоединяемая (ручная) - не изменяет информацию SENC.

Кроме перечисленных имеется еще ряд категорий.

При выполнении корректуры электронных карт необходимо учитывать несоответствия систем координат бумажных и электронных карт на точность нанесения корректуры

Официальным источником информации в некоторых случаях могут быть ИМ, где приведены координаты объектов для конкретных бумажных карт. Различие систем координат определяется разными параметрами эллипсоидов, используемых при созда­нии бумажной карты и отображении электронной.

Исходя из того, что в судовой коллекции могут быть ENC, изготовленные на основе бумажных карт разных государств, которые имеют различные системы координат, судоводитель должен знать все особенности корректуры электронных карт по информации ИМ для бумажных и особенности изложения информации в ИМ различных государств.

Информация в ИМ принадлежит бумажной карте. В результате того, что электронная карта должна обязательно отображаться в системе координат WGS-84, а бумажная может быть изготовлена в другой (эллипсоид не WGS-84), значения координат одной и той же точки на бумажной и электронной картах могут значительно отличаться. В результате возможных различий систем координат электронной и бумажной карты ошибка, возникающая в результате пренебрежения вводом поправок к широте и долготе, может достигать на местности 350 - 400 м и более. Этот показатель часто значительно превышает ширину судоходного канала. Для корректуры карт крупного масштаба необходим обязательный учет этих поправок.

При нанесении точек на ENC по информации ИМ судоводитель должен вводить поправки в координаты, используя информацию легенды карты. Как правило, в легенде карты указываются поправки для перехода от системы координат WGS-84 к системе координат бумажной карты.

Компьютеры коренным образом изменили картографию, упростив сбор и показ всего комплекса данных, предназначенных для составления карты. Информация по геоморфологии и рельефу местности, полученная с надземных и спутниковых съемок, может быть выражена в цифрах и введена в компьютер для дальнейшего использования при составлении карт.

Точно так же уже существующие карты могут быть просканированы и выражены в цифровой форме в виде компьютерных данных. Картографические базы данных могут также включать информацию о городах, автомобильных и железных дорогах, флоре и хозяйственной деятельности человека на данной территории. Поскольку вся информация записана в компьютер в цифровой форме, она может быть реорганизована различными способами в зависимости от предназначения карты. К примеру, карта городской водопроводной сети и сточных труб может быть использована для анализа работы канализационной сети и разработки мер по ликвидации утечки воды. Такая карта может включать также схему газовых труб, электрической сети и всех подземных коммуникаций. Когда город строит новые сети, компьютерная карта может быть легко изменена без необходимости составления новых чертежей.

Трехмерные данные могут быть введены в Стерео-цифровую программестическую станцию (СЦПС) с использованием параллаксовых или зрительных смещений на надземных фотографиях, снятых разными камерами.

Данные преобразуются в цифры либо при помощи мыши, которой водят по карте, либо на основе структурного чертежа и введения координат для каждого элемента карты.

Компьютерная картография

Картографические данные из различных источников могут быть представлены в виде цифр и записаны в памяти компьютера. Затем данные могут быть обработаны для составления карт различного назначения.

Картографическая база данных. Разделяется на Пласты базы данных, данные о дорогах, данные о строительстве, данные о трубах и т.д. Различные типы картографической информации могут быть собраны и записаны в отдельные пласты компьютерной базы данных. При необходимости информация может быть извлечена по отдельности или в комбинации.

Рабочая станция для картографической информационной системы.


Городская планировка может быть усовершенствована с помощью карты, содержащей существенную информацию о домах и зданиях, как это показано на карте одного из японских городов.


Строительные планы могут опираться на карты, содержащие информацию о трубах и других подземных сетях, чтобы строители знали, где можно и где нельзя копать.

От карт к графике

Данные, привлеченные к составлению карты, могут быть использованы для создания компьютерной графики, нанесенной на карту местности. Эта способность компьютера наглядно демонстрирует многогранность компьютерной картографии.

Требования по эксплуатации судовой электронной

Изменения гл. V Конвенции SOLAS-74 естественным образом вносит изменения к требованиям проверок судов службами Port State Control и Flag State Control.

Конвенционное оборудование ЭКДИС должно проверяться по аналогии с проверками другого конвенционного оборудования. Исходя из того, что оно используется для отображения электронных карт, которые могут заменять бумажные, требования к проверкам включают и эту составляющую. Как известно, проверка любых карт определяется не только проверкой их наличия, но и проверкой даты и качества корректуры, ее оформления, статистики хранения, оформления прокладки и проработки перехода.

Основным руководящим документом является «Port State Control Committee instruction 35/2002/02. Guidelines for PSCOs on electronic chart», в котором изложены основные требования, предъявляемые при проверках.

Формализованные отношения между судоводителем, судовладельцем и сервисной службой при работе с бумажными картами всем понятны. Для обслуживания электронных картографических систем многие вопросы остаются открытыми и требуют подготовки более определенной нормативной базы. Учитывая развития этого направления, необходимо предусматривать периодическую корректировку разрабатываемых требований. Подобная динамика наблюдается и в развитии аналогичных береговых систем. Исходя из этого, проблемы сервисной поддержки приобретают большую актуальность. Аналогичные вопросы могут возникать и при проверках неконвенционного оборудования, т.е. RCDS и ECS, которое также эффективно используется на судне для решения вопросов безопасности судовождения.

Рассмотрим перечень требований, которые могут быть предъявлены к вахтенному помощнику, отвечающему за эксплуатацию электронной картографической системы. Независимо от того, какая электронная картографическая система находится на борту судна, судоводитель должен знать основы ее работы и требования к современной профилактике для поддержания системы в рабочем состоянии.

Основное внимание в нем уделяется минимальным знаниям по следующим вопросам обеспечения корректурной информацией электронных навигационных карт и дополнительных баз данных.

1. Какой тип электронной картографической системы находится на борту судна (RCDS, ECS, ECDIS)?

2. Статус картографической системы (конвенционное или дополнительное оборудование).

3. Наличие документации на картографическую систему.



4. Судовая документация по учету технического обслуживания, наличие на борту руководств пользователям.

5. Наличие договора с официальным дистрибьюторами на обновление и добавление коллекции электронных карт.

6. Наличие договора с фирмой, обеспечивающей сервисное обслуживание.

7. Наличие резервного комплекта оборудования, решение технических вопросов сопряжения основного и резервного комплекта оборудования на судне (только для оборудования ЭКДИС).

8. Наличие сертификатов у членов экипажа по работе с картографической системой.

9. Электронные карты, имеющиеся в базе данных картографической системы, статус карт (официальные или нет).

10. Дополнительные электронные базы данных (лоции, пособия, таблицы и т. д.), имеющиеся в картографической системе, статус баз данных (официальные или нет).

11. Способ доставки на судно электронных карт и дополнительных электронных баз данных.

12. Способ доставки на судно корректуры для электронных карт и для дополнительных электронных баз данных.

13. Возможность конвертирования данных электронной карты в SENC средствами картографической системы.

14. Определение даты последней корректуры электронных карт на запрашиваемый район.

15. Наличие знаний и навыков корректуры электронных карт судовой коллекции в ручном и полуавтоматическом режиме.

16. Общие представления о структуре WEND и RENC.

17. Адреса официальных представителей RENC для планируемого района плавания.

18. Принципы системы кодирования электронных ячеек, принятые в мире и в России.

19. Просмотр и анализ данных ячеек ENC (только для оборудования ECDIS) и информации по принятой корректуре.

20. Наличие на судне дополнительных программ для решения вопросов сервисной поддержки и обеспечения корректурной информацией, знания работы с ними.

21. Основные положения «Руководства по корректуре ENC» стандарта S-52 и резолюция IМО А.817(19) (только для оборудования ECDIS).

Реферат на тему

Геоинформационные системы: электронная картография


Введение

1.Что такое электронное картографирование

2.Модели ГИС

3.Решаемые задачи

4. Кому нужны ГИС

Литература


Введение

Информация о реальных объектах и событиях в той или иной мере содержит так называемую пространственную составляющую. Пространственный аспект имеют здания и сооружения, земельные участки, водные, лесные и другие природные ресурсы, транспортные магистрали и инженерные коммуникации. Уже давно доказано, что 80-90 % всех данных составляют геоданные, т. е. не просто абстрактные, безличные данные, а информация, имеющая свое определенное место на карте, схеме или плане.

Каждый из нас хоть однажды в своей жизни работал с бумажной картой. С появлением компьютеров появились и компьютерные карты, которые обладают множеством дополнительных и полезных свойств.


1. Что такое электронное картографирование

В отличие от бумажной карты, электронная карта, содержит скрытую информацию, которую можно использовать по мере необходимости. Эта информация представляется в виде слоев, которые называются тематическими, потому что каждый слой состоит из данных определенной тематики (рис. 1). Например, один слой электронной карты может содержать сведения о дорогах, второй - о проживающем населении, третий - о фирмах и организациях и т. д. Каждый слой можно просматривать по отдельности, совмещать сразу несколько слоев или выбирать отдельную информацию из различных слоев и выводить ее на карту.

Электронную карту можно легко масштабировать на экране компьютера, перемещать в разные стороны, рисовать и удалять объекты, печатать на принтере любые территории. Кроме того, компьютерная карта обладает и другими свойствами. Например, можно запрещать (или разрешать) отображать на экране определенные объекты. Выбрав объект с помощью мыши, можно запросить информацию о нем, например, высоту и площадь дома, название улиц и др.

Именно с появлением электронных карт появился и другой термин «геоинформационные системы» (ГИС). Существуют десятки определений геоинформационных систем (их еще называют и географическими информационными системами). Но большинство специалистов склоняются к тому, что определение ГИС должно базироваться на понятии СУБД. Поэтому можно сказать, что ГИС - это системы управления базами данных, предназначенные для работы с территориально-ориентированной информацией.

Рис. 1. Основу большинства современных ГИС-приложений составляют информационные слои

Важнейшей особенностью ГИС является способность связывать картографические объекты (т. е. объекты, имеющие форму и местоположение) с описательной, атрибутивной информацией, относящейся к этим объектам и описывающей их свойства (рис. 2).

Как было отмечено выше, в основе построения ГИС лежит СУБД. Однако, вследствие того, что пространственные данные и разнообразные связи между ними достаточно сложно описать реляционной моделью, полная модель данных в ГИС имеет смешанный характер. Пространственные данные специальным образом организованы, и эта организация не базируется на реляционной концепции. Напротив, атрибутивная информация объектов (семантические данные) вполне удачно может быть представлена реляционными таблицами и соответствующим образом обрабатываться.



Рис. 2. В электронных картах даже обычная точка может сопровождаться коллекцией фотографий, дающей представление об этой местности

Объединение моделей данных, лежащих в основе представления пространственной и семантической информации в ГИС, образует геореляционную модель.

Любая географическая информация содержит сведения о пространственном положении, будь то привязка к географическим или другим координатам или ссылки на адрес, почтовый индекс, идентификатор земельного или лесного участка, название дороги и др. (рис. 3). При использовании подобных ссылок для автоматического определения местоположения объекта применяется процедура геокодирования. С ее помощью можно быстро определить и посмотреть на карте где находится интересующий вас объект.

Более перспективным является бесслоевой объектно-ориентированный подход к представлению объектов на цифровой карте. В соответствии с ним объекты входят в классификационные системы, которые отражают определенные логические отношения между объектами предметных областей. Группировка объектов разных классов для разных целей (отображения или анализа) производится более сложным способом, однако, объектно-ориентированный подход более близок к характеру человеческого мышления, чем послойный принцип.



Рис. 3. В современных ГИС-приложениях можно производить необходимые расчеты грузоперевозок

2.Модели ГИС

Так как ГИС может работать с двумя существенно отличающимися типами данных - векторными и растровыми, то существует и две модели ГИС.

В векторной модели кодированная информация о точках, линиях и полигонах хранится в виде набора координат X, Y (в некоторых ГИС часто добавляется третья пространственная и четвертая, например, временная координата). Местоположение точки (точечного объекта), например, здания, описывается парой координат (X, Y). Линейные объекты, такие как дороги или реки, сохраняются как наборы координат X, Y. Полигональные объекты типа земельных участков или областей обслуживания хранятся в виде замкнутого набора координат. Векторная модель особенно удобна для описания дискретных объектов и меньше подходит для описания непрерывно меняющихся свойств, таких как плотность населения.

Растровая модель оптимальна для работы с непрерывными свойствами, так как растровое изображение представляет собой набор значений для отдельных элементарных составляющих (ячеек), оно подобно отсканированной карте или картинке.

3.Решаемые задачи

ГИС общего назначения обычно выполняет несколько задач:

Ввод данных;

Манипулирование и управление ими;

Информационный запрос и его анализ;

Визуализация данных.

Для использования в ГИС данные должны быть преобразованы в подходящий цифровой формат. Процесс преобразования данных из бумажных карт в компьютерные файлы называется оцифровкой. В современных ГИС этот процесс может быть автоматизирован с применением сканерной технологии, что особенно важно при выполнении крупных проектов, либо при сравнительно небольшом объеме работ данные можно вводить с помощью дигитайзера. Некоторые ГИС имеют встроенные векторизаторы, автоматизирующие процесс оцифровки растровых изображений. Часто для выполнения конкретного проекта имеющиеся картографические данные нужно изменить. Для совместной обработки и визуализации все данные удобнее представить в едином масштабе и одинаковой картографической проекции. ГИС-технология предоставляет разные способы манипулирования пространственными данными и выделения данных, нужных для конкретной задачи. В небольших проектах географическая информация может храниться в виде обычных файлов. Но при увеличении объема информации и росте числа пользователей для хранения, структурирования и управления данными эффективнее применять СУБД, специальные компьютерные средства для работы с интегрированными наборами данных. При наличии ГИС и географической информации можно получать ответы, как на простые вопросы, так и на более сложные, требующие дополнительного анализа, запросы. Запросы можно задавать как простым щелчком кнопкой мыши на определенном объекте, так и посредством развитых аналитических средств. Процесс наложения (пространственного объединения) включает интеграцию данных, расположенных в разных тематических слоях. Для многих типов пространственных операций конечным результатом является представление данных в виде карты или графика. ГИС предоставляет новые удивительные инструменты, расширяющие и развивающие искусство и научные основы картографии. С ее помощью визуализация самих карт может быть легко дополнена отчетными документами, трехмерными изображениями, графиками, таблицами, диаграммами, фотографиями и другими средствами, например, мультимедийными.

4. Кому нужны ГИС

1. Предпринимателям.

Люди, занимающиеся бизнесом, могут использовать ГИС в разных областях своей деятельности для анализа и отслеживания текущего состояния и тенденций изменения интересующей их области рынка.

2. Руководителям предприятий.

Благодаря возможности ГИС связывать объекты схемы производственного цикла с чем угодно по щелчку кнопки мыши, обеспечивается эффективное управление производственным процессом, предотвращение аварий сводится к минимуму операции, повышается надежность и уменьшается потребность в персонале.

3. Нефтяникам и газовикам.

4. Охранным службам.

ГИС позволит определить оптимальное расположение камер наблюдения и других устройств, выдавать их сообщения в реальном времени, распечатывать отчеты в заданное время.

5. Транспортным службам.

Благодаря ГИС, в любой момент можно узнать, где находятся грузовики, состояние дорожного покрытия, информацию о пробках на дорогах, эффективнее рассчитывать загруженность транспорта и оптимизировать маршрут движения.

6. Пожарникам.

Пожарные команды получают мощное средство по координированию действий отдельных подразделений, по охвату и наблюдению за большей площадью, расчету направления огня и прогнозированию скорости его распространения.

7. Маркетологам.

Использование ГИС-приложений помогает переориентировать главную цель маркетинговых усилий с удовлетворения осредненных потребностей населения города или района на оперативное реагирование на запросы каждого человека, живущего или работающего в зоне реализации товаров фирмы.

С помощью ГИС можно проводить необходимые демографические исследования, выяснять, где проживают ваши потенциальные клиенты и по каким дорогам ездят (на самых загруженных и лучше освещенных разместить рекламные щиты).

9. Почтовым службам.

К соответствующим картам привязаны места проживания клиентов, маршруты и расписания авиарейсов, границы административных районов, другая полезная информация, позволяющая справиться с возрастающими потоками корреспонденции.

10. Банкам.

ГИС поможет вам точно и эффективно расположить филиалы, осуществить инкассацию, оперировать ресурсами в соответствии с состоянием рынка ценных бумаг и других факторов.

11. Экологам.

Использование ГИС позволяет наблюдать и оценивать состояние земной и водной поверхности районов, подверженных экологическим катастрофам.

12. Вооруженным силам.

ГИС помогут связать с географическими данными оперативно-тактическую информацию, а также отслеживать переброску войск и техники в районах боевых действий.

13. Администрациям.

Для городских и районных администраций ГИС являются необходимым инструментом в управлении коммунальными, дорожными и другими службами, обеспечивающими жизнедеятельность городов и населенных пунктов.

5. Краткий обзор средств разработки ГИС

Универсальное и наиболее распространенное средство для создания ГИС ARC/INFO служит для обеспечения компьютерного картографирования и оперативного принятия решений. Оно работает с любыми видами информации, имеющей привязку к территории. С помощью ARC/INFO можно легко получить в цифровой форме любую карту, схему, видеоизображение или рисунок, ввести табличные, статистические и другие тематические данные, привязанные к объектам карты. ARC/INFO позволяет работать с сериями карт, накладывая одну карту на другую, и проводить их сопряженный анализ, создавать «твердые» копии необходимых карт и схем.

Упрощенная версия ARC/INFO - Arcview - поддерживает внутренний формат SHAPE и внутренний язык программирования AVENUE. Но при использовании этой системы для больших по объему слоев проявляется эффект процессорозависимости, т. е. нужно иметь мощные ресурсы процессора и памяти, чтобы эффективно работать с ней. В ее поставку входят дополнительные модули для анализа геоинформационных данных 3D-Analyst и SpatialAnalyst.

Полнофункциональная оболочка географических информационных систем среднего класса ATLAS GIS содержит все обычные средства ввода, редактирования и печати/рисования карт, развитые презентационные средства (полное управление цветами и штриховками, создание и редактирование символов, многочисленные вставки, тематическое картографирование, бизнес-графику). Кроме того, она поддерживает работу с растровыми проектами (растровые подложки), позволяет группировать данные по географическому признаку, создавать буферные зоны, специальные средства обработки данных, основанные на библиотеке встроенных функций и операторов, развитые функции импорта и экспорта данных в другие форматы.

При разработке ГИС-приложений среда разработки Maplnfo Professional обеспечивает доступ к базам данных Oracle8i, хранилищам данных на сервере и управление ними, создание тематических карт, создание и запись SQL-запросов. Кроме того, эта среда разработки поддерживает растровые форматы, включая BMP, JPG, TIFF, MrSID, имеет универсальный преобразователь для форматов AutoDesk, ESRI и Intergraph. Начиная с версии 6, обеспечивается поддержка Интернета и трехмерных изображений, а также усовершенствованы средства геокодирования информации.

Еще одна популярная среда разработки AutoCAD Map обладает всеми инструментами программы AutoCAD 2000, а также специализированными возможностями для создания, отслеживания и производства карт и географических данных. Она позволяет работать с широким спектром файловых форматов и типов данных, обеспечивает возможность связи с базами данных и включает основные инструменты ГИС-анализа. Используя AutoCAD Map, можно связывать карты с ассоциативными базами данных, добавлять данные в карты и делать их более интеллектуальными, чистить карты, строить узловую, сетевую и полигональную топологию для анализа, создавать тематические карты с легендами, работать с существующими данными карты в других системах координат и файловых форматах, импортировать данные из других CAD и ГИС-систем, экспортировать данные в другие форматы, распечатывать карты и атласы.

Главными преимуществами российской системы GEOGRAPH-GE-ODRAW является функциональность и невысокая цена. Она состоит из трех основных модулей:

Geograph (модуль конечного пользователя, фактически - это про-смотрщик);

Geodraw (векторный топологический редактор);

Geoconstructor (средство разработки приложений).

Программный комплекс GeoCad Systems (www.qeocad.ru) предназначен для разработки и последующего операционного обслуживания информационных систем целевого (преимущественно, кадастрового) назначения конечного пользователя. Модули управления базами данных этой системы реализованы в среде MS Access, предоставляющей пользователям мощный инструмент разработки и адаптации клиент-приложений системы.

Для обработки графической информации объектов (отображения метрических данных и их графического редактирования) в комплект модульной многоцелевой кадастровой системы Geocad System входит специализированный модуль CPS Graph. Он является неотъемлемой частью.

ГИС ИнГЕО (www.integro.ru) - система, в которой пользователь сам может конструировать библиотеки любых векторных символов, линий, заливок. Это наиболее эффективная ГИС для создания топопланов масштаба 1:10000 - 1:500. Она имеет развитую инструментальную систему в технологии lnternet\lntranet, с помощью которой пользователь может самостоятельно строить сложнейшие реляционные таблицы семантических данных картографических объектов. ИнГЕО имеет мощную кадастровую надстройку - систему ИМУЩЕСТВО и систему МОНИТОРИНГ.

Система TopoL представляет собой универсальную ГИС, применимую во многих отраслях для решения разнообразных прикладных задач. Она позволяет выполнять весь комплекс работ по созданию, редактированию, анализу и использованию цифровых карт местности. Ее вариант TopoL-L предназначен для лесхозов и лесоустройства.

Интерфейс программы ориентирован на отраслевые задачи, отличается простотой и функциональностью. Стандартное меню исходного программного продукта отсутствует. Меню содержат только те пункты, которые необходимы пользователю.

Развитие Интернета не обошло стороной и картографию. Так, картографическое ПО для Интернета позволяет публиковать готовые тематические карты во Всемирной сети. Серверные картографические приложения, разработанные для внедрения интерактивных карт в Интернете, имеют широкий набор картографических функций. Одним из таких программных продуктов, предназначенных для публикации и сопровождения картографической информации в Интернете, является MapXtreme - сервер картографических приложений, созданный корпорацией Maplnfo. Открытая архитектура MapXtreme работает с любым Web-сервером и не нуждается в дополнительных plug-ins, что позволяет использовать любые браузеры на ПК или рабочих станциях UNIX. Еще один продукт этой корпорации, MapXsite, позволяет достаточно легко встраивать в Web-страницы картографическую информацию.

6. Некоторые украинские разработки

Атлас Украины является первым полнофункциональным геоинформационным продуктом всеукраинского значения. Он был разработан совместными усилиями сотрудников киевской компании Интеллектуальные Системы ГЕО и Института географии Национальной Академии Наук Украины.

Электронный Атлас Украины рассчитан на широкий круг пользователей и предназначен прежде всего для справочно-информационных и пользовательских целей. Он позволяет получить общее и достаточно полное представление об изображенных на его картах природных и социально-экономических процессах и может стать учебником при изучении этих процессов. Главной составляющей информационного обеспечения Атласа Украины является набор электронных карт. Он включает в себя информацию о геополитическом положении Украины, ее истории, природных условиях и ресурсах, населении, культуре, религии, экономических и социальных условиях проживания населения, финансах и бизнесе, политике и экологии.

Среди функциональных возможностей Атласа Украины следует выделить изменение масштаба карты для более детального просмотра, получение информации о просматриваемых объектах, возможность поиска информации на карте по ключевому слову, возможность печати картографических материалов.

Атлас Украины доступен и в Интернете: на Web-сайте компании Интеллектуальные Системы ГЕО (www.isgeo.kiev.ua) можно увидеть интерактивные карты Киева (масштаб 1:50000) и Украины (1:500000).

Другая известная в Украине ГИС - ВИЗИКОМ-КИЕВ (разработчик - киевская компания ВИЗИКОМ (www.visicom.kiev.ua)) - ориентирована на широкий круг пользователей, которым для принятия решений необходимо осуществлять анализ картографических данных, контроль собственных объектов, а также поиск и отображение объектов на плане города Киева. Система, отличается легкостью использования, в то же самое время предоставляет достаточно широкие возможности поиска и отображения данных. Она предоставляет пользователю возможности отображения произвольного фрагмента плана города, определения расположения на плане улиц города по их названиям и почтовому адресу. Также с помощью этой системы можно получить информацию об учреждениях, предприятиях и организациях города, выполнять поиск учреждений, предприятий и организаций, расположенных в городе Киеве по различным критериям, создавать дополнительные информационные слои на плане города, выводить на печатающее устройство необходимые фрагменты плана и алфавитно-цифровые характеристики отдельных предприятий или объектов собственных информационных слоев пользователя, просматривать и искать объекты транспортной сети украинской столицы, планировать оптимальные маршруты движения.

С конца 1998 года в Украине используется первая версия графической информационной системы сети железных дорог ТМкарта (www.tmsoft-ltd.com). Она имеет удобный графический интерфейс, позволяет отображать транспортную сеть железных дорог по всей территории Украины, СНГ и Балтии, автоматически отслеживать движение вагонов по всему пути их следования.


В процессе написания реферата мы ознакомились с электронным картографированием, моделями ГИС, решаемыми задачами ГИС, кому могут понадобиться ГИС, произвели краткий обзор существующих ГИС и ГИС украинского происхождения. Данный реферат может быть полезен для студентов различных специальностей, которые используют различные географические карты в процессе обучения.


Литература

1. Антонов А.В. Системный анализ. Методология. Построение модели: Учеб. пособие. - Обнинс: ИАТЭ, 2001. - 272 с.

2. Богданов А.А. Тетология: В 3 т. - М., 1905-1924.

3. Венда В.Ф. Системы гибридного интеллекта: эволюция, психология, информатика. - М.: Машиностроение, 1990. - 448 с.

4. Волова В.Н. Основы теории систем и системного анализа/ В.Н. Волова, А.А. Денисов. - СПб.: СПбГТУ, 1997. - 510 с.

5. Волова В.Н. Методы формализованного представления систем/ В.Н. Волова, А.А. Денисов, Ф.Е. Темнигов. - СПб.: СПбГТУ, 1993. - 108 с.

6. Гасаров Д.В. Интеллетальные информационные системы. - М.: Высш. ш., 2003. - 431 с.

7. Гелшов В.М. Введение в АСУ. - Киев: Техника, 1974.

8. Дегтярев Ю.И. Системный анализ и исследования операций. - М.: Высш. ш., 1996. - 335 с.

9. Корячов В.П. Теоретичесие основы САПР: Учеб. для вузов/ В.П. Корячо, В.М. Крейчи, И.П. Норенов. - М.: Энергоатомиздат, 1987. - 400 с.

10. Мамионов А.Г. Основы построения АСУ: Учеб. для взов. - М.: Высш. ш., 1981. - 248 с.

11. Меньов А.В. Теоретичесие основы автоматизированного управления: Учеб. пособие. - М.: МГУП, 2002. - 176 с.

12. Острейовский В.А. Автоматизированные информационные системы в экономике: Учеб. пособие. - Ср т: СрГУ, 2000. - 165 с.

13. Острейовский В.А. Современные информационные технологии экономистам: Учеб. пособие. Ч. 1. Введение в автоматизированные информационные технологии. - Ср т:СрГУ, 2000. - 72 с.

14. Автоматизированные информационные технологии в экономике/Под ред. проф. Г.А. Титоренко. - М.: Компьютер, ЮНИТИ, 1998.- 400 с.

15. Автоматизированные информационные технологии в банковской деятельности / Под ред. проф. Г.А. Титоренко. - М.: Финстатинформ, 1997.

1. Основы электронной картографии

1.1. Основные понятия

Название данной дисциплины состоит из трех понятий; картография, электронная, основы. Картография - эта карта и все что с ней связано. Основы - это основные знания о электронной картографии. Понятие "электронная" трудно привязать к карте. Более проще понять когда карту назвать цифровой. Но так сложилось это понятие.

Основы электронной картографии - это основные знания об электронной картографии.

Структура электронной картографии приведена на рис.1.

Законодательство и нормативные документы

Требования к источникам данных

Требования к обработке данных

Требования к данным перед представлением в системе отображения

Требования к системам отображения данных

Требования к пользователю

Возможность использования в электронных картах

Возможность использования после обработки в существующих системах отображения

Необходимость преобразования данных в формат соответствующий системе отображения данных

Соответствие требованиям соответствующих организаций

Знание основ электронной картографии

Источники данных для электронных карт

Обработка данных для отображ.

Данные для отображе-

Системы отображения данных

Пользователь электронных карт

Нав.системы

GPS, ГЛОНАСС, АИС, наз. тр-т, др.

Системы обр. данных

Панорама,

Использова- ние : навигация морская и сухопутная,

обработка геоданных, наука, образование, различные области

Носитель данных

Бумажный,

фотобумага,

электронный

(цифровая, анал. камера, телев. камера)

Бумажный,

Фотобумага,

электронный

(цифровая камера, телев. камера)

электронный

Вид данных

Растровый, векторный

Растровый, векторный

векторный

растровый

Формат данных

Форматы в растровом и векторном виде

в формате системы отображения

Рис. 1. Структура электронной карты

В бумажной картографии символы наносятся на бумажную основу. При этом символы понятны человеку и соответствуют определенным требованиям. В электронной карте аналогично, только вместо бумажной основы - система отображения в виде дисплея.

Источники создания электронных карт те же что и у бумажных, плюс данные в цифровом виде. В процессе развития электронной картографии сложилось так, что данные в различных системах отображения имеют различные форматы, что затрудняет или вообще не позволяет использовать данные в других системах отображения.

Возникает необходимость в обработке данных перед их представлением в системе отображения.

Источники данных для электронной картографии, системы обработки данных, данные перед представлением в системе отображения, сами системы отображения и пользователь электронных карт должны удовлетворять соответствующим требованиям, определенных на основе нормативных документов и законодательных актов.

Кроме этого, для работы с электронной картографией необходимы знания о форматах данных, видах графики (векторная, растровая), устройстве систем отображения способах обработки и представления данных и другие знания, связанные с электронной картографией.

Для получения этих знаний курсантами определен перечень лекций и лабораторных работ, необходимых курсанту с освоением дисциплины "Основы электронной картографии"

Согласно ГОСТ 21667-76 Картография. Термины и определения,

Картография - это область науки, техники и производства, охватывающая изучение, создание и использование картографических произведений.

Исходный картографический материал - картографический материал, который используется для создания или обновления карты.

Карта - построенное в картографической проекции, уменьшенное, обобщенное изображение поверхности Земли, поверхности другого небесного тела или внеземного пространства, показывающее расположенные на них объекты в определенной системе условных знаков.

Согласно ГОСТ 28441-99 КАРТОГРАФИЯ ЦИФРОВАЯ, цифровая карта; ЦК: Цифровая картографическая модель, содержание которой соответствует содержанию карты определенного вида и масштаба.

Более простым языком, карта - это бумажный носитель с нанесенным на нем условными обозначениями, согласно нормативных документов необходимый человеку для его деятельности.

Цифровая карта - информация, удовлетворяющая стандарту. S57,

В системе отображения ECDIS цифровая карта удовлетворяет стандарту S57 в части обмена данными между системами и определенному стандарту в самой системе.

Основная цель электронных карт и навигационных систем, построенных на их основе, - упрощение повседневного труда штурмана и повышение безопасности мореплавания.

Первые электронные карты появились в 90-х годах и представляли собой сканированные копии бумажных карт. Подобные карты принято называть растровыми электронными картами . Однако выяснилось, что простое сканирование бумажных карт, зачастую приводит к невозможности их использования совместно с современными навигационными устройствами. Кроме того, использование растровых электронных карт (RENC) затрудняет проведение автоматического анализа навигационной ситуации.

На основе тщательного изучения современных информационных технологий и их специфики в области морской навигации, Гармонизационной группой ИМО/МГО был разработан эксплутационный стандарт на систему отображения электронных карт и информации ECDIS , основывающийся на использовании векторных электронных карт формата S-57. Основное предназначение стандарта S-57 - стандартизация обмена гидрографическими данными между Гидрографическими Службами, Агентствами, производителями картографической продукции и ECDIS -систем.

Согласно S-57, гидрографическая информация структурируется в наборы данных, которые, в свою очередь, могут объединяться в наборы обмена. Набор данных S-57 может рассматриваться как объектно-ориентированная база данных, подчиняющаяся перечисленным в стандарте семантическим правилам (объекты, атрибуты, связи между ними и т.д.) и записанная (закодированная) в соответствии с описанным в стандарте синтаксисом.

Семантика стандарта опирается на то, что любой картографический объект обладает, как пространственно-геометрическими, так и функционально-описательными свойствами. В соответствии с этим карта S-57 состоит из двух типов объектов: пространственных (spatial) и описательных (feature). Spatial объекты (например, node - узел, edge - сегмент, face - площадь), характеризуются координатами, задающими их местоположение на поверхности Земли. Feature объекты, обладают определенным набором атрибутов и описывают некий естественный или искусственный предмет, например: LNDARE - область суши, DEPARE - область глубин, BOYCAR - кардинальный буй и т.д. Между объектами могут существовать связи различного типа, позволяющие смоделировать сколь угодно сложную сущность реального мира. Подробное описание стандарта находится в IHO Transfer Standard for Digital Hydrographic Data Edition 3.0 -

В настоящий момент осуществляется переход от версии 2 стандарта S-57 (известного как DX90) к последнему изданию S-57 edition 3. Следует отметить, что из-за существенных изменений в семантической модели, конвертация данных из DX90 в S-57 ed. 3 является достаточно сложной задачей. Программы dKart Inspector и dKart Office позволяют автоматизировать процесс преобразования данных и создания цифровых наборов обмена, предоставляя средства для контроля качества изготавливаемой продукции.

Являясь стандартом обмена гидрографическими данными, S-57 не оптимален при прямом использовании в судовых навигационных системах. Навигационные электронно-картографические системы могут использовать внутренний формат представления данных - SENC (System ENC). Формат SENC более компактен и специально предназначен для представления картографической информации на экране монитора.

Одним из широко распространенных S-57 совместимых SENC-форматов является формат картографических данных CM93 фирмы C-Map.

Навигационные электронно-картографические системы dKart Navigator и dKart Explorer ориентированы на использование S-57 совместимых данных, в том числе CM93 и DCF.

По вопросам приобретения электронных навигационных карт CM93 обращайтесь к разделу электронные карты .

помимо данных, содержащихся на традиционных морских картах, электронные карты содержат данные и из других источников - книг огней и знаков, лоций и пр. - нет

По сравнению с традиционными бумажными картами и публикациями, электронные карты обладают рядом преимуществ, повышающих безопасность судовождения и облегчающих ориентацию в текущей навигационной ситуации:

    помимо данных, содержащихся на традиционных морских картах, электронные карты содержат данные и из других источников - книг огней и знаков, лоций и пр. - нет необходимости искать навигационную информацию в разрозненных источниках - все данные сосредоточены в электронной карте;

    векторная структура данных (являющаяся стандартной для электронных карт) позволяет проводить быстрый анализ навигационной ситуации, информируя судоводителя о возможных опасностях;

    процедура корректуры электронной карты намного легче традиционной и может быть выполнена в течение минут, непосредственно в море. Используя электронные карты и цифровые корректуры, судоводитель получает уверенность в том, что имеющаяся у него картографическая информация отражает самые последние изменения;

    совместно с внешними навигационными устройствами (GPS , САРП, АИС-транспондер ) электронные карты предоставляют возможности для отображения в реальном времени навигационной ситуации, включая собственное местоположение судна, положение радарных и АИС-целей.

Общие принципы построения систем отображения навигационной информации используемые в электронной картографии

Сейчас координаторскую деятельность по стандартизации электронных карт осуществляет IHO во содействии с IMO . Электронная карта. обхватывает как термин три понятия:

описание данных;

программное обеспечение для их обработки;

электронную систему отображения данных.

1.2. Область применения электронных карт

Область применения электронных карт: судоходство морское и речное, автомобильный транспорт, министерство обороны, различные области науки и техники

1.3. Пользователи электронных карт

Пользователи электронных карт; капитан, штурман (судоходство морское и речное); водители, диспетчера (наземный транспорт); капитан, штурман (воздушный транспорт; космонавты; геодезисты; географы; и т.д.

1.4. Контрольные вопросы

1. Что такое бумажная карта?

2. Что такое электронная карта?

3. Что такое картография?

4. Что такое электронная картография?

5. Каковы основные причины перехода с бумажных карт на электронные?

6. Какова область применения электронных карт?

7. Кто пользователи электронных карт?

 


Читайте:


Новое

Как востановить менструальный цикл после родов:

Где заполняются графики работы в 1с зуп

Где заполняются графики работы в 1с зуп

"Зарплата", 2010, N 11 График работы - основной инструмент планирования рабочего времени и контроля соблюдения норм труда. В статье мы расскажем о...

Как уволиться без отработки двух недель, пошаговая инструкция Кто отрабатывает 2 недели при увольнении

Как уволиться без отработки двух недель, пошаговая инструкция Кто отрабатывает 2 недели при увольнении

По данным объективной статистики половина трудоспособного населения работает в постоянном нервном напряжении, которое нередко является причиной...

Возможно ли увольнение сотрудника без отработки Увольнение менее чем за 2 недели

Возможно ли увольнение сотрудника без отработки Увольнение менее чем за 2 недели

(кликните, чтобы открыть)Увольнение с рабочего места – это всегда непростая процедура. Иногда уволиться сложнее, чем устроиться на работу. Один из...

Мировой рынок вооружения Кто экспортирует оружие в страны третьего мира

Мировой рынок вооружения Кто экспортирует оружие в страны третьего мира

Что и кому продают основные экспортёры оружия? Ответ редакции С 1 апреля в стране , действовавший с 1976 года. Японские компании теперь смогут...

feed-image RSS