Главная - Войны
Упрощенная структура блока аэс. Атомная электростанция. Особенности атомной энергетики

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Как устроена АЭС?

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

В середине ХХ века лучшие умы человечества упорно трудились сразу над двумя задачами: над созданием атомной бомбы, а также над тем, как можно использовать энергию атома в мирных целях. Так появились первые в мире В чем заключается принцип работы АЭС? И где в мире расположены крупнейшие из этих электростанций?

История и особенности ядерной энергетики

"Энергия - всему голова" - именно так можно перефразировать известную пословицу, учитывая объективные реалии XXI века. С каждым новым витком технического прогресса человечеству необходимо всё большее ее количество. Сегодня энергия "мирного атома" активно используется в экономике и производстве, и не только в энергетике.

Электроэнергия, производимая на так называемых АЭС (принцип работы которых весьма прост по своей сути), широко используется в промышленности, освоении космоса, медицине и сельском хозяйстве.

Ядерной энергетикой называется отрасль тяжелой промышленности, извлекающая тепловую и электроэнергию из кинетической энергии атома.

Когда же появились первые АЭС? Принцип работы подобных электростанций советские ученые изучали еще в 40-х годах. Кстати, параллельно они же изобретали и первую атомную бомбу. Таким образом, атом был одновременно и "мирным", и смертельным.

В 1948 году И. В. Курчатов предложил советскому правительству начать проводить непосредственные работы по извлечению атомной энергии. Двумя годами позже в Советском Союзе (в городе Обнинске Калужской области) начинается строительство самой первой на планете АЭС.

Принцип работы всех схож, а разобраться в нем совсем не трудно. Об этом пойдет речь далее.

АЭС: принцип работы (фото и описание)

В основе работы любой лежит мощная реакция, которая возникает при делении ядра атома. В этом процессе чаще всего участвуют атомы урана-235 или же плутония. Ядро атомов делит нейтрон, попадающий в них извне. При этом возникают новые нейтроны, а также осколки деления, которые имеют огромную кинетическую энергию. Как раз эта энергия и выступает главным и ключевым продуктом деятельности любой атомной станции

Так можно описать принцип работы реактора АЭС. На следующем фото вы можете посмотреть, как он выглядит изнутри.

Выделяют три основных типа ядерных реакторов:

  • канальный реактор высокой мощности (сокращенно - РБМК);
  • водно-водяной реактор (ВВЭР);
  • реактор на быстрых нейтронах (БН).

Отдельно стоит описать принцип работы АЭС в целом. О том, как она работает, речь пойдет в следующей статье.

Принцип работы АЭС (схема)

Работает в определенных условиях и в строго заданных режимах. Кроме (одного или нескольких), в структуру АЭС входят и прочие системы, специальные сооружения и высококвалифицированный персонал. В чем же заключается принцип работы АЭС? Кратко его можно описать следующим образом.

Главный элемент любой АЭС - это ядерный реактор, в котором происходят все основные процессы. О том, что происходит в реакторе, мы писали в предыдущем разделе. (как правило, чаще всего это уран) в виде небольших черных таблеток подается в этот огромный котел.

Энергия, выделяемая во время реакций, происходящих в атомном реакторе, преобразуется в тепло и передается теплоносителю (как правило, это вода). Стоит отметить, что теплоноситель при этом процессе получает и некоторую дозу радиации.

Далее тепло из теплоносителя передается обычной воде (посредством специальных устройств - теплообменников), которая в результате этого закипает. Водяной пар, который при этом образуется, вращает турбину. К последней подсоединен генератор, который и генерирует электрическую энергию.

Таким образом, по принципу действия АЭС - это та же тепловая электростанция. Разница лишь в том, каким способом образуется пар.

География ядерной энергетики

Первая пятерка стран по производству атомной энергии выглядит следующим образом:

  1. Франция.
  2. Япония.
  3. Россия.
  4. Южная Корея.

При этом Соединенные Штаты Америки, вырабатывая в год около 864 миллиардов кВт*час, производят до 20 % всей электроэнергии планеты.

Всего в мире 31 государство эксплуатирует атомные электростанции. Из всех континентов планеты лишь два (Антарктида и Австралия) полностью свободны от атомной энергетики.

На сегодняшний день в мире функционирует 388 ядерных реакторов. Правда, 45 из них уже полтора года не вырабатывали электроэнергию. Большая часть ядерных реакторов расположена в Японии и в США. Полная их география представлена на следующей карте. Зеленым цветом обозначены страны с действующими ядерными реакторами, указано также их общее количество в конкретном государстве.

Развитие ядерной энергетики в разных странах

В целом, по состоянию на 2014 год в развитии ядерной энергетики наблюдается общий спад. Лидерами по строительству новых атомных реакторов являются три страны: это Россия, Индия и Китай. Кроме этого, ряд государств, не имеющих атомных электростанций, планируют построить их в ближайшее время. К таковым можно отнести Казахстан, Монголию, Индонезию, Саудовскую Аравию и ряд стран Северной Африки.

С другой стороны, ряд государств взяли курс на постепенное сокращение числа атомных электростанций. К таким относится Германия, Бельгия и Швейцария. А в некоторых странах (Италия, Австрия, Дания, Уругвай) ядерная энергетика запрещена на законодательном уровне.

Основные проблемы ядерной энергетики

С развитием ядерной энергетики связана одна существенная экологическая проблема. Это так называемое окружающей среды. Так, по мнению многих экспертов, АЭС выделяют больше тепла, нежели такие же по мощности тепловые электростанции. Особо опасно тепловое загрязнение вод, которое нарушает жизни биологических организмов и приводит к гибели многих видов рыб.

Другая острая проблема, связанная с атомной энергетикой, касается ядерной безопасности в целом. Впервые человечество всерьез задумалось об этой проблеме после Чернобыльской катастрофы 1986 года. Принцип работы Чернобыльской АЭС мало чем отличался от такового других атомных электростанций. Однако это не спасло её от крупной и серьезной аварии, повлекшей за собой очень серьезные последствия для всей Восточной Европы.

Причем опасность ядерной энергетики не ограничивается лишь возможными техногенными авариями. Так, большие проблемы возникают с утилизацией ядерных отходов.

Преимущества атомной энергетики

Тем не менее сторонники развития ядерной энергетики называют и явные преимущества работы атомных электростанций. Так, в частности, Всемирная ядерная ассоциация недавно опубликовала свой отчет с весьма интересными данными. Согласно ему, количество человеческих жертв, сопровождающих производство одного гигаватта электроэнергии на АЭС, в 43 раза меньше, чем на традиционных тепловых электростанциях.

Есть и другие, не менее важные, преимущества. А именно:

  • дешевизна производства электроэнергии;
  • экологическая чистота атомной энергетики (за исключением лишь теплового загрязнения вод);
  • отсутствие строгой географической привязки атомных электростанций к крупным источникам топлива.

Вместо заключения

В 1950 году была построена первая в мире АЭС. Принцип работы атомных электростанций заключается в делении атома с помощью нейтрона. В результате этого процесса высвобождается колоссальный объем энергии.

Казалось бы, атомная энергетика - это исключительное благо для человечества. Однако история доказала обратное. В частности, две крупные трагедии - авария на советской Чернобыльской АЭС в 1986 году и авария на японской электростанции Фукусима-1 в 2011 году - продемонстрировали опасность, которую несет в себе "мирный" атом. И многие страны мира сегодня начали задумываться о частичном или даже полном отказе от ядерной энергетики.

Страница 1 из 3

Атомные электрические станции (АЭС) могут быть конденсационными, теплофикационными (АТЭЦ), а также атомными станциями теплоснабжения (ACT) и атомными станциями промышленного теплоснабжения (ACПT). Атомные станции сооружаются по блочному принципу как в тепловой, так и в электрической части.
Ядерные реакторы АЭС классифицируются по различным признакам. По уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые (на тепловых нейтронах) и быстрые (на быстрых нейтронах). По виду замедлителя нейтронов реакторы бывают водными, тяжеловодными, графитовыми, а по виду теплоносителя - водными, тяжеловодными, газовыми, жидко металлическими. Водоохлаждаемые реакторы классифицируются также по конструктивному исполнению: корпусные и канальные.
С точки зрения организации ремонта оборудования наибольшее значение для АЭС имеет классификация по числу контуров. Число контуров выбирают с учетом требований обеспечения безопасной работы блока при всех возможных аварийных ситуациях. Увеличение числа контуров связано с появлением дополнительных потерь в цикле и соответственно уменьшением КПД АЭС.
В системе любой АЭС различают теплоноситель и рабочее тело. Рабочим телом, т.е. средой, совершающей работу, преобразуя тепловую энергию в механическую, является водяной пар. Назначение теплоносителя на АЭС - отводить теплоту, выделяющуюся в реакторе. Если контуры теплоносителя и рабочего тела не разделены, АЭС называют одноконтурной (рис. 1).

Рис.1. Тепловая схема АЭС:
а - одноконтурная; б - двухконтурная; в - трехконтурная; 1 - реактор; 2 - турбина; 3- турбогенератор; 4- конденсационная установка; 5- конденсатный насос; б - система регенеративного подогрева питательной воды; 7 - питательный насос; 8 - парогенератор; 9 - циркуляционный насос контура реактора; 10 - циркуляционный насос промежуточного контура

В одноконтурных схемах все оборудование работает в радиационно-активных условиях, что осложняет его ремонт. По одноконтурной схеме работают АЭС с реакторами типа РБМК-1000 и РБМК-1500.
Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной. Соответственно контур теплоносителя называют первым, а контур рабочего тела - вторым. В таких схемах реактор охлаждается теплоносителем, прокачиваемым через него, и парогенератор - главным циркуляционным насосом. Образованный таким образом контур теплоносителя является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть. Второй контур включает оборудование, которое работает при отсутствии радиационной активности - это упрощает ремонт оборудования. На двухконтурной станции обязателен парогенератор, который разделяет первый и второй контуры.
По двухконтурной схеме работают АЭС с реакторами типа ВВЭР-440 и ВВЭР-1000. Существуют теплоносители, интенсивно взаимодействующие с паром и водой. Это может создать опасность выброса радиоактивных веществ в обслуживаемые помещения. Таким теплоносителем является, например, жидкий натрий. Поэтому создают дополнительный (промежуточный) контур, для того чтобы даже в аварийных режимах избежать контакта радиоактивного натрия с водой или водяным паром. Такие АЭС называют трехконтурными. По трехкотурной схеме работают АЭС с реакторами типа БН-350 и БН-600.В настоящее время на АЭС в основном установлены энергоблоки мощностью 350 - 1500 МВт с реакторами типа ВВЭР-440, ВВЭР-1000, РБМК-1000, РБМК-1500, БН-350 и БН-600. Основные характеристики реакторов приведены в табл. 1.

Таблица 1. Основные характеристики реакторов АЭС


Параметр

Тип реактора

Водо-водяные

Канальные водо-графи- товые

На быстрых нейтронах

БН-350 БН-600

Тепловая мощность реактора, МВт

Электрическая мощность, МВт

Давление в корпусе реактора, МПа

Давление в барабанах-сепараторах или в парогенераторах, МПа

Расход воды, циркулирующей в реакторе, м3/ч

Кампания реактора, ч

Размер активной зоны, м: диаметр высота

1,5 2,05 1,0 0,75

Топливные кассеты: число кассет число твэлов в кассете

Атомные электростанции, где установлены реакторы: ВВЭР-440 - Ровенская и др.; ВВЭР-1000 - Запорожская, Балаковская, Нововоронежская, Калининская, Южно-Украинская и др.; РБМК-1000 - Ленинградская, Чернобыльская, Курская, Смоленская и др.; РБМК-1500 - Игналинская; БН-350 - Шевченковская; БН-600 - Белоярская.
Водо-водяной энергетический реактор (ВВЭР) - реактор корпусного типа. Замедлитель и теплоноситель - вода под давлением. Рабочее тело на АЭС с реакторами ВВЭР - водяной пар.
Реактор большой мощности кипящий (РБМК) - это канальный реактор, замедлителем в котором служит графит, а теплоносителем - вода и пароводяная смесь.
У реакторов на быстрых нейтронах теплоносителем первого и второго контуров является натрий, тем самым исключается возможность контакта радиоактивного металла с водой. На рис. 2 приведена принципиальная технологическая схема АЭС с ВВЭР. Тепловая энергия из активной зоны реактора 5 в парогенератор 1 переносится водой, циркулирующей под давлением, созданным ГЦН 2. Реактор ВВЭР-1 000 имеет четыре главных циркуляционных контура (на рис. 2 условно показан один контур) и столько же ГЦН.


Рис. 2. Упрощенная технологическая схема АЭС с водо-водяным энергетическим реактором:
1 - парогенератор; 2 - главный циркуляционный насос (ГЦН); 3 - компенсатор объема; 4 - гидроаккумулятор системы аварийного охлаждения; 5 - реактор; 6 - установка спецводоочистки; 7 - насос нормальней подпитки и борного регулирования; 8 - теплообменник и насос охлаждения бассейна выдержки тепловыделяющих элементов (твэлов); 9 - баки аварийного запаса борного раствора системы САОЗ нормальной и повышенной концентрации; 10 - теплообменник расхолаживания реактора; 11 - спринклерные насосы; 12 - насосы аварийного расхолаживания низкого и высокого давления; 13, 15 - аварийный и рабочий насосы подкачки борного концентрата; 14 - бак борного концентрата; 16 - паровая турбина; 17 - сепаратор-пароперегреватель; 18 - быстродействующие редукционные установки (БРУ) сброса пара; 19 - генератор; 20 - маслоохладитель; 21, 22 - газоохладитель и его насос; 23 - насос технической воды; 24 - циркуляционный насос турбины; 25 - конденсатор; 26, 28 - конденсатные насосы первой и второй ступеней; 27- конденсатоочистка; 29 - подогреватель низкого давления; 30 - питательный турбонасос; 31 - пескорезервный питательный электронасос; 32 - насос расхолаживания; 33 - деаэратор; 34 - подогреватель высокого давления; 35 - бак запаса питательной воды; 36 - аварийный питательный насос; 37 - насосы слива теплоносителя I контура

Для поддержания определенного давления пара над уровнем воды в реакторном контуре установлен паровой компенсатор объема 3 с электронагревом, который обеспечивает испарение воды в компенсаторе объема.
Безопасность АЭС обеспечивают системы нормальной эксплуатации, локализующие системы и система аварийного охлаждения активной зоны реактора (САОЗ). Локализующая система и САОЗ должны обеспечить нераспространение радиоактивности вне герметичных помещений АЭС при всех нормальных и аварийных режимах. Аварийное охлаждение реактора обеспечивается тремя независимыми системами. Одна из таких систем состоит из баков аварийного запаса борного раствора 9, теплообменника расхолаживания 10, спринклерного насоса 11, насосов аварийного расхолаживания низкого и высокого давления 12. В случае разгерметизации реакторного контура и небольшой течи включаются насосы 12, подающие борированный раствор в контур. При максимальной проектной аварии (МПА) - разрыве главного циркуляцонного контура и падении давления в реакторе в объем над активной зоной и под нее подается вода из гидроаккумулирующих емкостей 4. Это должно предотвратить закипание воды в реакторе. Одновременно борированная вода подается в спринклерные установки и в реакторный контур. В струях воды спринклерной установки пар конденсируется и предотвращается повышение давления в герметичной оболочке. Стекающая в приямки вода охлаждается в теплообменниках 10 и вторично закачивается в контур и в спринклерные установки до полного охлаждения реактора.
Подпитка первого контура при нормальном режиме осуществляется насосами 7 из деаэратора первого контура. При малых расходах борсодержащая вода подается насосами 13 и 15.
Для охлаждения воды в бассейне перегрузки и выдержки тепловыделяющих элементов (твэлов) имеется теплообменник и насос 8. Насосы 37 необходимы для обеспечения циркуляции охлаждающей жидкости через теплообменник и спецводоочистку.
При помощи системы управления и защиты реактора (СУЗ) осуществляется пуск и останов реактора, вывод и автоматическое поддержание мощности и выравнивание полей энерговыделения по объему активной зоны. Управление и защита реактора осуществляются перемещением в активной зоне реактора поглотителей нейтронов при помощи органов управления.
Технологическая схема второго нерадиоактивного контура АЭС во многом аналогична схеме КЭС.
Конструктивно реакторное отделение с реактором ВВЭР-1000 состоит из герметичной части - оболочки и негерметичной - обстройки. В герметичной части расположено основное оборудование: реактор, парогенератор, ГЦН, компенсатор объема, главные циркуляционные трубопроводы, емкости САОЗ и др. Для обеспечения необходимой степени безопасности оборудование и коммуникации с радиоактивным теплоносителем высокого давления, который при разуплотнении контура дает выход радиоактивных осколков деления наружу, заключены в герметичную оболочку. Оболочка задерживает радиоактивные продукты аварии внутри помещения без ухудшения сверхдопустимого предела радиационной обстановки снаружи оболочки реактора.
В основу компоновки энергоблоков АЭС с реакторами ВВЭР-1000 положен принцип модульной компоновки, т.е. в каждом энергоблоке предусмотрены все системы, обеспечивающие радиационную и ядерную безопасность энергоблока, а также аварийный останов, расхолаживание, отвод остаточных тепловыделений и комплекс послеаварийных мероприятий, независимо от режима работы остальных энергоблоков. Общестанционные системы, необходимые для обеспечения работы энергоблоков в режимах нормальной эксплуатации, выделены в отдельные сооружения АЭС.
Герметичная часть имеет цилиндрическую форму и состоит из двух объемов - верхнего и нижнего, которые соединены по воздуху. Верхняя часть перекрыта сферическим куполом. В верхней части оболочки установлено оборудование реакторной установки, системы очистки теплоносителя первого контура, транспортно-технологическое оборудование и вентиляционные системы.
Нижняя цилиндрическая часть оболочки соосна с верхним цилиндром и опирается на фундаментную плиту реакторного отделения. В этой части смонтированы вентиляционные камеры трубопроводов системы аварийного расхолаживания реактора, системы охлаждения шахты реактора и др.
Негерметичная часть реакторного отделения в плане имеет форму квадрата, который охватывает окружность оболочки. В помещениях смонтированы блочные технологические системы, которые по выполняемому функциональному назначению технологических процессов должны располагаться в зоне строгого режима. Реакторное отделение является зоной строгого режима. В помещениях реакторного отделения возможно воздействие на персонал внешнего 0-„ и-, 7-излучений, загрязнение воздушной среды радиоактивными газами и аэрозолями, загрязнение поверхности строительных конструкций и оборудования радионуклидами или радиоактивными веществами.
На АЭС с реакторами ВВЭР-1000 к помещениям зоны свободного режима относятся: машинный зал, где установлена турбина К-1030- 60/1500 или К-1000-60/1500 и турбогенератор ТВВ-1000-4УЗ, приточный 42 вентиляционный центр, блочные щиты управления и другое оборудование, т.е. помещения, в которых персонал не занят непосредственно на работах с источниками ионизирующих излучений. В зоне свободного режима практически исключается воздействие на персонал ионизирующего излучения.
При оценке уровня радиации в помещениях АЭС основным фактором радиационного воздействия является поток ионизирующих излучений, проникающих за биологическую защиту, в основном поток 7-излучения. Во всех зонах АЭС системы вентиляции обеспечивают допустимые концентрации радиоактивных веществ во вдыхаемом воздухе.

10,7% всемирной генерации электричества ежегодно вырабатывают атомные электростанции. Наряду с ТЭС и ГЭС они трудятся над обеспечением человечества светом и теплом, позволяют пользоваться электроприборами и делают наши жизнь удобнее и проще. Так уж вышло, что сегодня слова «атомная станция» ассоциируются с мировыми катастрофами и взрывами. Простые обыватели не имеют ни малейшего понятия о работе АЭС и ее строении, но даже самые непросвещенные наслышаны и напуганы происшествиями в Чернобыле и Фукусиме.

Что такое АЭС? Как они работают? Насколько опасны атомные станции? Не верьте слухам и мифам, давайте разбираться!

Что такое АЭС?

16 июля 1945 года на военном полигоне в США впервые извлекли энергию из ядра урана. Мощнейший взрыв атомной бомбы, принесший огромное количество человеческих жертв, стал прототипом современного и абсолютно мирного источника электроэнергии.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США. Для проверки работоспособности генератор подключили к 4м лампам накаливания, неожиданно для всех лампы зажглись. С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первая в мире атомная станция была запущена в Обнинске в СССР в 1954 году. Ее мощность составляла всего 5 мегаватт.

Что такое АЭС? АЭС это ядерная установка, которая производит энергию с помощью ядерного реактора. Ядерный реактор работает на ядерном топливе, чаще всего уране.

В основе принципа работы ядерной установки лежит реакция деления нейтронов урана , которые сталкиваясь друг с другом, делятся на новые нейтроны, которые, в свою очередь, тоже сталкиваются и тоже делятся. Такая реакция называется цепной, она и лежит в основе ядерной электроэнергетики. При всем этом процессе выделяется тепло, которое нагревает воду до ужасно горячего состояния (320 градусов по Цельсию). Потом вода превращается в пар, пар вращает турбину, она приводит в действие электрогенератор, который и вырабатывает электроэнергию.

Строительство АЭС сегодня ведется большими темпами. Основная причина роста количества АЭС в мире – это ограниченность запасов органического топлива, попросту говоря, запасы газа и нефти иссякают, они необходимы для промышленных и коммунальных нужд, а урана и плутония, выступающих топливом для атомных станций, нужно мало, его запасов пока вполне хватает.

Что такое АЭС? Это не только электричество и тепло. Наряду с выработкой электроэнергии, ядерные электростанции используются и для опреснения воды. К примеру, такая атомная станция есть в Казахстане.

Какое топливо используют на АЭС

На практике в атомных станциях могут применяться несколько веществ, способных выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, т.к. его сложнее преобразовать в тепловыделяющие элементы, если коротко ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри ТВЭлов находятся радиоактивные вещества. Эти трубки можно назвать хранилищами ядерного топлива. Вторая причина редкого использования тория – это его сложная и дорогая переработка уже после использования на АЭС.

Плутониевое топливо тоже не используется в атомной электроэнергетике, т.к. это вещество имеет очень сложный химический состав, который до сих пор так и не научились правильно использовать.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. Уран сегодня добывается тремя способами: открытым способом в карьерах, закрытым в шахтах, и способом подземного выщелачивания, с помощью бурения шахт. Последний способ особенно интересен. Для добычи урана выщелачиванием в подземные скважины заливается раствор серной кислоты, он насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде. Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья. Для сравнения, в России из одной тонны руды получают чуть больше полутора килограмм урана.

Места добычи урана нерадиоактивны. В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

В виде руды уран в АЭС использовать нельзя, никаких реакций он дать не сможет. Сначала урановое сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом. Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при чудовищно высоких температурах больше 1500 градусов по Цельсию. Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Конечно, просто так урановые таблетки в реактор не закидываются. Они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки. Именно ТВС и могут по праву называться топливом АЭС.

Переработка топлива АЭС

Примерно через год использования уран в ядерных реакторах нужно менять. Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение. В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них сделают свежее ядерное топливо.

Продукты распада урана и плутония идут на изготовление источников ионизирующих излучений. Они используются в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в раскаленную печь и из остатков варится стекло, которое потом остается храниться в специальных хранилищах. Почему именно стекло? Из него будет очень сложно достать остатки радиоактивных элементов, которые могут навредить окружающей среде.

Новости АЭС — не так давно появившийся новый способ утилизации радиоактивных отходов. Созданы так называемые быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива. По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Кроме того, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного. Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого никто использовал.

Как строится АЭС?

Что такое атомная электростанция? Что представляет собой это нагромождение серых зданий, которые большинство из нас видело только по телевизору? Насколько прочны и безопасны эти конструкции? Каково строение АЭС? В сердце любой атомной станции находится здание реактора, рядом с ним помещается машинный зал и здание безопасности.

Строительство АЭС ведется согласно нормативным актам, регламентам и требованиям безопасности для объектов, работающих с радиоактивными веществами. Ядерная станция – полноправный стратегический объект государства. Поэтому толщина укладки стен и железобетонных арматурных сооружений в здании реактора в несколько раз больше, чем у стандартных сооружений. Таким образом, помещения атомных станций могут выдержать 8-бальное землетрясение, торнадо, цунами, смерчи и падение самолета.

Здание реактора венчается куполом, который защищен внутренней и внешней бетонными стенками. Внутреннюю бетонную стенку покрывает стальной лист, который в случае аварии должен создать закрытое воздушное пространство и не выпустить радиоактивные вещества в воздух.

Каждая АЭС имеет свой бассейн выдержки. Туда помещаются урановые таблетки, которые уже отслужили свой срок. После того, как урановое топливо вытаскивают из реактора, оно остается чрезвычайно радиоактивным, чтобы реакции внутри ТВЭлов перестали происходить, должно пройти от 3х до 10ти лет (в зависимости от устройства реактора, в котором топливо находилось). В бассейнах выдержки урановые таблетки остывают, и внутри них перестают происходить реакции.

Технологическая схема АЭС, а проще говоря, схема устройства атомных станций бывает нескольких типов, как и характеристика АЭС и тепловая схема АЭС, она зависит от типа ядерного реактора, который используется в процессе получения электроэнергии.

Плавучая АЭС

Что такое АЭС, нам уже известно, но российским ученым пришло в голову, взять атомную станцию и сделать ее передвижной. К сегодняшнему дню проект почти завершен. Назвали эту конструкцию плавучая АЭС. По задумке, плавучая ядерная электростанция сможет обеспечить электричеством город населением до двухсот тысяч человек. Главное ее достоинство – возможность перемещения по морю. Строительство АЭС, способной к передвижению, пока ведется только в России.

Новости АЭС это скорый запуск первой в мире плавучей ядерной электростанции, которая призвана обеспечить энергией портовый город Певек, находящийся в Чукотском автономном округе России. Называется первая плавучая атомная станция «Академик Ломоносов», строится мини-АЭС в Петербурге и планируется к запуску в 2016 – 2019 годах. Презентация атомной электростанции на плаву состоялась в 2015, тогда строители представили почти готовый проект ПАЭС.

Плавучая АЭС призвана обеспечить электроэнергией самые отдаленные города, имеющие выход к морю. Ядерный реактор «Академика Ломоносова» не такой мощный, как у сухопутных атомных станций, но имеет срок эксплуатации 40 лет, это значит, что жители небольшого Певека почти полвека не будут страдать от нехватки электричества.

Плавучая АЭС может быть использована не только как источник тепловой и электроэнергии, но и для опреснения воды. По расчетам, в сутки она может выдать от 40 до 240 кубометров пресной воды.
Стоимость первого блока плавучей АЭС составила 16 с половиной миллиардов рублей, как видим, строительство атомных станций – не дешевое удовольствие.

Безопасность АЭС

После Чернобыльской катастрофы в 1986 году и аварии на Фукусиме в 2011 слова атомная АЭС вызывают у людей страх и панику. На деле современные атомные станции оснащены по последнему слову техники, разработаны специальные правила безопасности, и в целом защита АЭС состоит из 3х уровней:

На первом уровне должна быть обеспечена нормальная эксплуатация АЭС. Безопасность АЭС во многом зависит от правильно подобранного места для размещения атомной станции, качественно созданного проекта, выполнения всех условий при постройке здания. Все должно отвечать регламентам, инструкциям по безопасности и планам.

На втором уровне важно не допустить перехода нормальной работы АЭС в аварийную ситуацию. Для этого существуют специальные приборы, которые контролируют температуру и давление в реакторах, и сообщают о малейших изменениях показаний.

Если первый и второй уровень защиты не сработали, в ход идет третий – непосредственная реакция на аварийную ситуацию. Датчики фиксируют аварию и сами реагируют на нее – реакторы глушатся, источники радиации локализируются, активная зона охлаждается, об аварии сообщается.

Безусловно, ядерная электростанция требует особого внимания к системе безопасности, как на стадии строительства, так и на стадии эксплуатации. Несоблюдения строгого регламента могут повлечь за собой очень серьезные последствия, однако сегодня большая часть ответственности за безопасность АЭС ложится на компьютерные системы, а человеческий фактор почти полностью исключен. Принимая во внимание высокую точность современных машин, в безопасности АЭС можно быть уверенными.

Специалисты уверяют, что в стабильно работающих современных атомных станциях или, находясь рядом с ними, получить большую дозу радиоактивного излучения невозможно. Даже работники АЭС, которые, к слову, ежедневно измеряют уровень полученного излучения, подвергаются облучению не больше, чем обычные жители крупных городов.

Ядерные реакторы

Что такое АЭС? Это в первую очередь работающий ядерный реактор. Внутри него и происходит процесс выработки энергии. В ядерный реактор закладываются ТВС, в нем же урановые нейтроны вступают в реакцию друг с другом, там же они передают тепло воде и так далее.

Внутри конкретного здания реактора находятся следующие сооружения: источник водоснабжения, насос, генератор, паровая турбина, конденсатор, деаэраторы, очиститель, клапан, теплообменник, непосредственно реактор и регулятор давления.

Реакторы бывают нескольких типов, в зависимости от того, какое вещество исполняет функцию замедлителя и теплоносителя в устройстве. Наиболее вероятно, что современная ядерная электростанция будет иметь реакторы на тепловых нейтронах:

  • водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя);
  • графитоводные (замедлитель – графит, теплоноситель – вода);
  • графитогазовые (замедлитель – графит, теплоноситель – газ);
  • тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода).

КПД АЭС и мощность АЭС

Общий КПД АЭС (коэффициент полезного действия) с водо-водяным реактором около 33%, с графитоводным – около 40%, тяжеловодным – около 29%. Экономическая состоятельность АЭС зависит от КПД ядерного реактора, энергонапряженности активной зоны реактора, коэффициента использования установленной мощности за год и т.д.

Новости АЭС – обещание ученых в скором времени увеличить КПД атомных станций в полтора раза, до 50%. Это произойдет, если тепловыделяющие сборки, или ТВС, которые непосредственно закладываются в ядерный реактор, будут изготавливать не из сплавов циркония, а из композита. Проблемы АЭС сегодня в том, что цирконий недостаточно жаропрочен, он не выдерживает очень высоких температур и давления, поэтому и КПД АЭС выходит невысоким, композит же может выдержать температуру выше тысячи градусов по Цельсию.

Эксперименты по использованию композита в качестве оболочки для урановых таблеток ведутся в США, Франции и России. Ученые работают над увеличением прочности материала и его внедрением в атомную энергетику.

Что такое атомная электростанция? АЭС это мировая электрическая мощь. Общая электрическая мощность АЭС всего мира – 392 082 МВт. Характеристика АЭС зависит в первую очередь от ее мощности. Самая мощная атомная станция в мире находится во Франции, мощность АЭС Сиво (каждого блока) больше полутора тысяч МВт (мегаватт). Мощность других ядерных электростанций колеблется от 12 МВт в мини-АЭС (Билибинская АЭС, Россия) до 1382 МВт (атомная станция Фламанвиль, Франция). На этапе строительства находятся блок Фламанвиль с мощностью 1650 МВт, атомные станции Южной Кореи Син-Кори с мощностью АЭС в 1400 МВт.

Стоимость АЭС

АЭС, что это? Это и большие деньги. Сегодня людям нужны любые способы добычи электроэнергии. Водяные, тепловые и атомные электростанции повсеместно строятся в более или менее развитых странах. Строительство атомной станции – процесс не из легких, требует больших затрат и капиталовложений, чаще всего денежные ресурсы черпаются из государственных бюджетов.

В стоимость АЭС входят капитальные затраты — расходы на подготовку площади, строительство, введение оборудования в эксплуатацию (суммы капитальных расходов запредельные, к примеру, один парогенератор АЭС стоит больше 9ти миллионов долларов). Кроме того ядерные станции требуют и эксплуатационных расходов, которые включают в себя покупку топлива, расходы на его утилизацию и проч.

По многим причинам официальная стоимость ядерной станции высчитывается лишь приблизительно, сегодня ядерная станция обойдется примерно в 21-25 миллиардов евро. С нуля построить один атомный блок обойдется примерно в 8 миллионов долларов. В среднем срок окупаемости одной станции – 28 лет, срок эксплуатации – 40 лет. Как видно, атомные станции – достаточно дорогое удовольствие, но, как мы выяснили, невероятно нужное и полезное для нас с вами.

Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать .


В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт ч/год),
  2. Франция(426,8 млрд кВт ч/год),
  3. Япония (273,8 млрд кВт ч/год),
  4. Германия (158,4 млрд кВт ч/год),
  5. Россия (154,7 млрдкВт ч/год).

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов

  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятностипоглощения нейтрона ядрами атомов топлива
  • Реакторы на лёгкой воде
  • Реакторы на тяжёлой воде
  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

По виду отпускаемой энергии

  1. Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  2. Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых , его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы - это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых , использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», - он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов - ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.


Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция - принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.

Отрицательные стороны атомных станций:

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) - характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.


Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:

  • Аванзал
  • Петровский зал
  • Большой фельдмаршальский зал
  • Гербовый зал
  • Георгиевский зал
Было предложено три режима освещения:
  • полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
  • рабочее – 230 ламп накаливания;
  • дежурное (ночное) – 304 лампы накаливания.
    Станция потребляла около 30 тыс. пудов (520 т) угля в год.

Крупные ТЭС, АЭС и ГЭС России

Крупнейшие электростанции России по федеральным округам:

Центральный:

  • Костромская ГРЭС, которая работает на мазуте;
  • Рязанская станция, основным топливом для которой является уголь;
  • Конаковская, которая может работать на газе и мазуте;

Уральский:

  • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работают на природном газе;
  • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
  • Троицкая, также работающая на угле;
  • Ириклинская, главным источником топлива для которой является мазут;

Приволжский:

  • Заинская ГРЭС, работающая на мазуте;

Сибирский ФО:

  • Назаровская ГРЭС, потребляющая в качестве топлива мазут;

Южный:

  • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;

Северо-Западный:

  • Киришская на мазуте.

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:

  • Саяно-Шушенская
  • Красноярская ГЭС;

Ангара:

  • Иркутская
  • Братская
  • Усть-Илимская.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Белоярская АЭС

Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции - 1760 МВт.

Курская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции - 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта ) - 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001-2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.


После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США - лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

 


Читайте:



Международный рынок туристских услуг становление и регулирование

Международный рынок туристских услуг становление и регулирование

Туристский рынок - это совокупность отношений (экономических, социальных, юридических), объединяющих производителей тур продукта и потребителей,...

Презентация на тему "лидерство в организации" Скачать презентацию на тему лидерство

Презентация на тему

Министерство образования и науки Тамбовский государственный университет им. Г.Р. Державина Академия экономики предпринимательства Реферат на тему:...

Курс, семинар, тренинг Отдел снабжения: эффективная работа с поставщиками Основные программы и направления тренингов

Курс, семинар, тренинг Отдел снабжения: эффективная работа с поставщиками Основные программы и направления тренингов

Доверив специалистам управление торговым ассортиментом и товарными потоками, руководство определяет необходимые полномочия и зоны их...

Как заполнить заявление на регистрацию ИП по форме Р21001

Как заполнить заявление на регистрацию ИП по форме Р21001

Первый вопрос, который интересует всех будущих предпринимателей - это сколько стоит открыть ИП. В случае самостоятельной регистрации ИП, стоимость...

feed-image RSS